Package: FlowRegEnvCost (via r-universe)

August 20, 2024
Type Package
Title The Environmental Costs of Flow Regulation
Version 0.1.1
Author Silvestre Garcia de Jalon; Javier Martinez-Lopez; Marta Gonzalez del Tanago; Carlos Alonso; Diego Garcia de Jalon
Maintainer Javier Martinez-Lopez <javi.martinez.lopez@gmail.com></javi.martinez.lopez@gmail.com>
Description An application to calculate the daily environmental costs of river flow regulation by dams based on García de Jalon et al. 2017 <doi:10.1007 s11269-017-1663-0="">.</doi:10.1007>
Depends R (>= 2.10)
<pre>URL https://github.com/garciadejalon/FlowRegEnvCost</pre>
<pre>BugReports https://github.com/garciadejalon/FlowRegEnvCost/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports zoo
Repository https://garciadejalon.r-universe.dev
RemoteUrl https://github.com/garciadejalon/flowregenvcost
RemoteRef HEAD
RemoteSha 998ea71b15123c2eaa83816bb560680c82775365
Contents
adm_range

2 adm_range

Index		9
	summary_flow	8
	impact_reg_plot	7
	impact_reg_multi_plot	6
	impact_reg	6

adm_range

Calculates the admissible range of flow variability

Description

Calculates the admissible range of flow variability

Usage

```
adm_range(First_year, Last_year, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Calculates the admissible range of flow variability based on the flow data during the pre-impact period.

Examples

```
data(flowdata)
adm_range(First_year=1964, Last_year=2011, Year_impact=1988)
```

adm_range_plot 3

adm_range_plot	Plots the admissible range of flow variability	

Description

Plots the admissible range of flow variability

Usage

```
adm_range_plot(River_name, First_year, Last_year, Year_impact)
```

Arguments

River_name	Name of the river as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Plots the admissible range of flow variability based on the flow data during the pre-impact period.

Examples

```
data(flowdata)
adm_range_plot(River_name = "Esla", First_year=1964, Last_year=2011, Year_impact=1988)
```

daily_cost	Calculates the daily environmental costs of flow regulation	
daily_cost	Culculates the daily environmental costs of flow regulation	

Description

Calculates the daily environmental costs of flow regulation

Usage

```
daily_cost(First_year, Last_year, Year_evaluated, Year_impact, a_low, a_high,
  b_low, b_high)
```

4 daily_cost_plot

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)
a_low	Coefficient a of Low-flow impact of function ku (e.g.: a_low = 0.05)
a_high	Coefficient a of High-flow impact of function ku (e.g.: a_high = 0.01)
b_low	Coefficient b of Low-flow impact of function ku (e.g.: b_low = 2)
b_high	Coefficient b of High-flow impact of function ku (e.g.: b_high = 2)

Value

Calculates the daily environmental costs of flow regulation for a specific year evaluated.

Examples

```
data(flowdata)
daily_cost(First_year=1964, Last_year=2011, Year_evaluated=2010,
Year_impact=1988, a_low = 0.05, a_high = 0.01, b_low = 2, b_high = 2)
```

daily_cost_plot

Plots the daily environmental costs of flow regulation

Description

Plots the daily environmental costs of flow regulation

Usage

```
daily_cost_plot(River_name, First_year, Last_year, Year_evaluated, Year_impact,
   a_low, a_high, b_low, b_high)
```

Arguments

River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)

flowdata 5

Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)
a_low	Coefficient a of Low-flow impact of function ku (e.g.: a_low = 0.05)
a_high	Coefficient a of High-flow impact of function ku (e.g.: a_high = 0.01)
b_low	Coefficient b of Low-flow impact of function ku (e.g.: b_low = 2)
b_high	Coefficient b of High-flow impact of function ku (e.g.: b_high = 2)

Value

Plots the daily environmental costs of flow regulation for a specific year evaluated.

Examples

```
data(flowdata)
daily_cost_plot(River_name = "Esla", First_year=1964, Last_year=2011,
Year_evaluated=2010, Year_impact=1988, a_low = 0.05, a_high = 0.01,
b_low = 2, b_high = 2)
```

flowdata

River water flow data.

Description

A dataset containing daily river water flow data for the Esla river at the Riaño dam (Northern Spain) from 01/10/1964 to 30/09/2011. The library adds missing days within the whole period automatically with NA flow values when you enter your own time series data.

Usage

flowdata

Format

An example data frame with 17166 rows and 2 variables:

```
Date Date (dd/mm/yyyy)Flow Water flow, in m^3/s
```

Source

```
Source: https://doi.org/10.1007/s11269-017-1663-0
```

Description

Calculates the daily environmental impact of flow regulation (high- and low-flow impact)

Usage

```
impact_reg(First_year, Last_year, Year_evaluated, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Calculates the daily environmental impact of flow regulation (high- and low-flow impact).

Examples

Description

Plots the daily environmental impact of flow regulation for multiple years

Usage

```
impact_reg_multi_plot(Row, Column, sp_years, River_name, First_year, Last_year,
    Year_impact)
```

impact_reg_plot 7

Arguments

Row	Number of rows in the figure to compare multiple years in separated graphs (e.g.: Row = 2)
Column	Number of columns in the figure to compare multiple years in separated graphs (e.g.: Column = 5)
sp_years	A vector specifying the years to be plotted (e.g.: $sp_years = c(1965, 1966, 1967, 1968, 1969, 2006, 2007, 2008)$
River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Plots the daily environmental impact of flow regulation for multiple years.

Examples

```
data(flowdata)
impact_reg_multi_plot(Row = 1,Column = 2,
sp_years = c(1965,2010),
River_name = "Esla", First_year=1964, Last_year=2011,
Year_impact=1988)
```

Description

Plots the daily environmental impact of flow regulation (high- and low-flow impact)

Usage

```
impact_reg_plot(River_name, First_year, Last_year, Year_evaluated, Year_impact)
```

Arguments

River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)

8 summary_flow

```
Year_evaluated Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)

Year_impact Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)
```

Value

Plots the daily environmental impact of flow regulation (high- and low-flow impact).

Examples

```
data(flowdata)
impact_reg_plot(River_name = "Esla", First_year=1964,
Last_year=2011, Year_evaluated=2010, Year_impact=1988)
```

summary_flow

Provides a summary of flow data during the pre-impact period

Description

Provides a summary of flow data during the pre-impact period

Usage

```
summary_flow(First_year, Last_year, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Provides a dataframe on a daily basis of mean, min, p10, p25, median, p75, p90 and max values during the pre-impact period.

Examples

```
data(flowdata)
summary_flow(First_year=1964, Last_year=2011, Year_impact=1988)
```

Index

```
* datasets
    flowdata, 5

adm_range, 2
adm_range_plot, 3

daily_cost, 3
daily_cost_plot, 4

flowdata, 5

impact_reg, 6
impact_reg_multi_plot, 6
impact_reg_plot, 7

summary_flow, 8
```